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 Benefits of Sigma-Delta ADCs  
 
Due to the complexity of designing baseband antialiasing filters with sharp transitions, it is 
beneficial to use sigma-delta (∑∆) ADCs for data conversions in communication (voiceband and 
audio) applications.  In order to appreciate this benefit, consider the following single tone signal 
using a standard ADC, sampled in the time domain. 
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Note:  fa is slightly slower than fs 

 
Figure 1 

 
In order to maintain the concepts of discrete time sampling and finite amplitude resolution du
quantization, continuous analog data must be sampled at discrete intervals of ts = 1/fs.  This 
interval must be carefully chosen to insure accurate representation of the original signal.  The
more samples taken for a particular signal (using faster sampling rates), the more accurate the
digital representation will be.  Additionally, if fewer samples are taken (using lower sampling
rates), critical information about the signal may be lost.  Therefore, it is important to abide to 
Nyquist’s criteria which states that 
 

• A signal with a bandwidth fa must be sampled at a rate of fs > 2fa or information about
signal will be lost. 

 
The concept of aliasing occurs whenever this criteria is broken where fs < 2fa.  In Figure 1 ab
fs is only slightly faster than the analog input frequency fa, which violates Nyquist’s criteria.  
aliased sine wave at a lower frequency equal to fs – fa is produced.  This adds non-harmonica
related frequency components to the sampled signal which cannot be distinguished or remove
from the signal of interest. 
 
The corresponding frequency domain representation for Figure 1 is shown in Figure 2.  Notic
the aliases that show up, especially fs-fa within the bandwidth of fa which cannot be filtered o
removed. 
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Figure 2 

 
Now consider the case of a single tone signal of frequency fa, sampled at frequency fs, using an 
ideal impulse sampler.  Assume that fs > fa as shown in Figure 3.  The output of this signal in the 
frequency domain shows that there are aliases of the original signal around every K multiple of 
fs.  That is, at frequencies equal to | + Kfs + fa |, where K=1,2,3,4…. 
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Figure 3 
 
The Nyquist bandwidth is defined as the frequency spectrum from DC to fs/2.  Although the 
signal in Figure 2 is outside the Nyquist bandwidth or the first Nyquist zone, its alias fs-fa, falls 
inside.  As mentioned before, this is not filterable.  However, in the case where fs > fa in Figure 
3, it is quite clear that an unwanted signal appears at any of the image frequencies of fa, it will 
also occur at fa, producing a spurious frequency component in that first Nyquist zone.  This is 
very similar to analog mixing components in communication applications, implying that some 
filtering prior to the sampler or ADC is required to remove frequency components which are 
outside the Nyquist bandwidth, but the aliased components lie within it.  The filter performance 
and complexity will depend on how close the out-of-band signal is to fs/2 and the amount of 
attenuation required. 
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The use of baseband antialiasing filters provides the proper filtering required to block unwanted 
frequency components (either signal or noise) outside the Nyquist bandwidth that alias back into 
the first Nyquist zone.  Therefore, properly specifying the baseband antialiasing filter is very 
important.  The initial step to doing so is to know the characteristics of the signal being sampled 
by assuming that the highest frequency of interest is fa.  The baseband antialiasing filter will 
allow passage of signals from DC to fa while attenuating signals above fa. 
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Assume that the corner frequency of the filter is chosen to be equal to fa.  Keep in mind that there 
is a finite transition (minimum to maximum attenuation) for this filter from fa to fs-fa.  This limits 
the dynamic range of the system.  Ideally a brick wall low-pass filter (at the corner frequency of 
fa) would be desired; however, this filter would be very difficult to design and is unrealizable 
within the constraints of the system cost and performance.  Therefore, the antialiasing filter 
transition is determined by three attributes:  (1) the corner frequency fa, (2) the stopband 
frequency fs-fa, (3) and the dynamic range (DR), given by the desired stopband attenuation as 
shown in Figure 4a below. 
 

Stopband Attenuation: DR Stopband Attenuation: DR 
Transition Band: fa to fs-fa Transition Band: fa to Kfs-fa 
Corner Frequency: fa Corner Frequency: fa 
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Figure 4a Figure 4b    

               
Filters become more complex and difficult to design as the transition band becomes sharper and 
sharper, while the corner frequency and the dynamic range remain the same.  As we can see in 
Figure 4b above, the sharpness of the antialiasing transition band can be traded off against the 
ADC sampling frequency.  Choosing a higher sampling rate, or oversampling, relaxes the 
requirement on the sharpness of the transition band (hence, the complexity of it) at the expense 
of using a faster ADC.  Additionally the data would be processed at a faster rate.  The wider 
transition band (fa to Kfs-fa) in Figure 4b makes the filter design easier than in the case of Figure 
4a. 
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Sigma-delta (∑∆) ADCs are inherently oversampling converters, and the resulting relaxation in 
the baseband antialiasing filter requirements is an added benefit for this type of architecture.  
They are now used in many applications where a low-cost, low-bandwidth (voiceband and 
audio), low-power, and high resolution ADC is required.  The basic components of a ∑∆ ADC 
contain simple analog electronics (a comparator, voltage reference, a switch, one or more 
integrators, analog summing circuits, and a DSP).  The DSP acts as a mathematical filter, 
generally a low pass filter.  To understand how a ∑∆ ADC works, it is advised to be familiar 
with concepts of oversampling, quantization noise shaping, digital filtering, and decimation. 
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To touch on these basic concepts, consider the technique of oversampling using frequency 
domain analysis.  A DC conversion with a quantization error of up to ½ LSB has quantization 
noise.  Figure 5a shows a “perfect” classical N-bit sampling ADC has an RMS quantization noise 
of q/√12 uniformly distributed within the Nyquist band of DC to fs/2 (where q is the value of an 
LSB and fs is the sampling rate).  The SNR with a full-scale sine wave input will be (6.02N + 
1.76) dB.  If the sampling ADC is less than perfect, and its noise is greater than its theoretical 
minimum quantization noise, then its effective resolution will be less than N-bits.  The error in 
the quantization noise is random and uncorrelated with the perfect representation signal.  The 
actual representation is given by the equation (often referred to as Effective Number of Bits or 
ENOB). 
 

 ENOB = 
dB

dB
02.6

76.1SNR −  (1) 

 
Choosing a higher sampling rate of Kfs, the RMS quantization noise remains at q/√12, however 
the noise is now distributed over a wider transition band of DC to Kfs/2 as in figure 5b.  
Applying a digital low pass filter (LPF) to the output will remove the quantization noise without 
affecting the desired signal, therefore ENOB is improved.  We have accomplished a high 
resolution A/D conversion with a low resolution ADC, while relaxing the requirements for the 
input analog antialiasing filter. 
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Figures 5a-c 
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The output data rate can now be reduced lower than the original sampling rate of Kfs because the 
bandwidth of the digital LPF on the output.  The Nyquist criterion is still satisfied.  The slower 
data rate is achieved by a process called decimation by a factor of M.  This process passes every 
Mth bit to the output, while discarding the remainder.  The factor M can be any integer value, 
provided that the output data rate is greater than twice the signal bandwidth.  No loss of 
information will result from the decimation process. 
 
Resolution can be improved with oversampling, however, we must over-sample by a factor of 
22N in order to obtain a increase in resolution of N-bits.  From figure 5c, we can see that the ∑∆ 
converter not only limits the signal passband, but also shapes the quantization noise so that most 
of it falls outside of the passband.  Therefore, the ∑∆ converter does not require such a high 
over-sampling ratio. 
 
The first-order ∑∆ modulator shown in Figure 6, is comprised of a 1-bit ADC (typically known 
as a comparator) driven by the output of an integrator that is fed with an input signal summed 
with the output of a 1-bit DAC fed from the ADC output.  Adding a digital low pass filter (LPF) 
and a decimator to the digital output will create a ∑∆ ADC.  The ∑∆ modulator shapes the 
quantization noise so that it lies above the passband of the digital output filter.  Therefore, the 
ENOB is much larger than just using oversampling. 
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Figure 6, First Order Sigma-Delta (∑∆) ADC 
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From Figure 6 above, assume a DC input at VIN.  The integrator constantly ramps up or down at 
node A, which feeds the comparator or 1-bit ADC.  The output of the 1-bit ADC controls the 
ones-density that is fed back through a 1-bit DAC which creates an average output voltage at 
node B at the rate of Kfs.  This average voltage is then forced to be equal to VIN by the summing 
point.  As the input signal increases towards +VREF, the number of “ones” in the serial bit stream 
increases, and the number of “zeros” in the serial bit stream decreases.  Conversely, as the input 
signal goes negative towards –VREF, the number of “zeros” in the serial bit stream increases, and 
the number of “ones” decreases.  Simply, the average value of the input voltage is contained in 
the serial bit stream of the comparator running at Kfs.  The digital filter and decimator, running at 
a rate of fs, processes the serial bit stream and produces the final output data. 
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